

Université Lille 2 Droit et Santé

Activité Physique et Condition Physique chez l'Adolescent

Lille, le 17 Mai 2010

Georges Baquet, Maître de Conférenres

Surpoids et Obésité chez les adolescents Garçons (14-17 ans)

© IASO November 2006

40

Surpoids et Obésité chez les préadolescents Garçons (7-11 ans)

© IASO November 2006

European Youth Heart Study

FIGURE 2-Age and gender distribution of time engaged in physical activity of at least moderate intensity by country (columns are means ± SD).

Amherst study (USA)

FIGURE 1—Nontransformed means \pm SD for daily MVPA by gender and grade level; * significant gender difference within grade group, P < 0.05; # significantly different from previous grade group within gender, P < 0.05.

Amherst study (USA)

FIGURE 2—Nontransformed means \pm SD for daily VPA by gender and grade level; * significant gender difference within grade group, P < 0.05; # denotes significantly different from previous grade group within gender, P < 0.05.

Toulon (France)

Toulon (France)

Participation aux cours d'EPS

Penny Larsen et al., Pediatrics, 2000

Performances des enfants et des adolescents aux tests anaérobies et aérobies

Tomkinson G, Scan J Med Sci Sport, 2007

RELATIONS ACTIVITE PHYSIQUE ET SANTE CHEZ L'ADOLESCENT

A: Influence de l'AP pendant l'adolescence sur l'AP à l'âge adulte

- AP pendant l'adolescence contribue au niveau d'AP à l'âge adulte
- 13 études longitudinales
 - Kemper et al. (2004)
 - Trudeau et al. (1998)
 - Gordon Larsen et al. (1999)
- ...mais on ne connaît la somme d'AP requise pour un style de vie actif

B: Influence de l'AP pendant l'adolescence sur la morbidité à l'âge adulte

- Harvard Alumni Health study (1986)
- Pas d'incidence entre niveaux d'AP et MCV
- Depuis 9 études longitudinales
 - Effet protecteur sur l'appareil osseux
 - Effet sur le cancer du sein
 - Pas de corrélation avec les risques de MCV

Sédentarité et faible condition physique sont associées à une santé plus précaire

C: Influence de l'AP pendant l'adolescence sur le traitement et le pronostic de morbidité à l'âge adulte

- AP et Asthme (natation)
- Fonction pulmonaire chez les adolescents atteints de mucoviscidose
- AP augmente l'estime de soi chez les adolescents
- AP et traitement de l'obésité
- Faible effectif des études
- AP et traitement de la boulimie

Sujets pathologiques

D: Influence de l'AP pendant l'adolescence sur la morbidité de l'adolescent

- Twisk (2001): pas d'effet sur niveau lipidique, tension artérielle et glycémie
 - : effet positif sur HDL-C et VO₂max
 - : diminue le stress et augmente l'estime de soi
 - : inversement corrélée à la masse grasse
- Motl et al. (2004): inversement corrélée à la dépression
- ACSM (2004): effet positif sur la masse osseuse
- Santé cardiovasculaire?

Bénéfice à la santé varie suivant la condition des adolescents (pathologie ou non)

Effet de la baisse d'AP

Charles et al., IJO, 2005

E: Effets négatifs de l'AP pendant l'adolescence

- Contraindre l'adolescent à une pratique physique peut engendrer une inactivité à l'âge adulte (Taylor et al., 1999)
- Anorexie et désordre alimentaire (Beumont et al., 1994)
- Blessure (Stricker et al., 2002)
- Amménorhées (Eliakim et al., 2003)
- Croissance interrompue (Risser, 1991)

Variables ayant une influence sur l'AP des jeunes

ENFANTS	ADOLESCENTS
	Parents:
	Aide directe +
	Encouragements ++
	AP ciblée ++
Activité physique des Parents (50% de la variance)	Activité physique des Parents (50% de la variance)

PSYCHOSOCIAL AND ENVIRONMENTAL CORRELATES OF ADOLESCENT SEDENTARY BEHAVIORS

Norman et al., Pediatrics, 2005

	GirlsOdds Ratios	BoysOdds Ratios	
TV/video rules	0.67*	0.76*	
Family support for change	0.96	1.08	
Encourage PA	0.89	0.86	
Transport to PA	0.93	0.85*	

Table. Results From Multiple Regression ModelsUsing Activity Motivation and Risk Statusto Predict Adolescents' Physical Activity

Predictors of Physical Activity*	β†	P Value
Model 1: Risk Factor = Overweight Status	R^2 for Model = 0.41	
Personal fulfillment motivation	.61	<.001
Weight motivation	09	.19
Peer motivation	.05	.48
Parent motivation	15	.07
Overweight status	52	<.01
Parent motivation×overweight status	.46	.01
Model 2: Risk Factor = Sex	R^2 for Model = 0.42	
Personal fulfillment motivation	.63	<.001
Weight motivation	74	<.001
Peer motivation	.08	.22
Parent motivation	01	.86
Gender	59	<.001
Weight motivation×sex	.81	<.01
Model 3: Risk Factor = Perceived	R^2 for Model = 0.42	
Athletic Competence		
Personal fulfillment motivation	.49	<.001
Weight motivation	13	<.05
Peer motivation	.12	.07
Parent motivation	03	.68
Perceived athletic competence	.25	<.001

Source de motivation pour les programmes d'AP

Epanouissement personnel

Haverly and Davison, Arch Pediatr Adolesc Med, 2006

Recommandations Internationales en termes d'AP

- Sallis and Patrick (1994)
 - 20 min dans une activité de modérée à intense, au moins 3 fois par semaine
- The United Kingdom Expert Consensus Group (1998)
 60 minutes accumulées par jour dans une AP de modérée à intense
 (≥ 60 min, ≥ 5 j/semaine, ≥ 3 METs).
- Healthy People 2010 (2000)
 - 30 minutes accumulées par jour dans une AP de modérée à intense ($\geq 60 \text{ min}, \geq 5 \text{ j/semaine}, \geq 3 \text{ METs}$)
 - 3 plages de 20 minutes continues par semaine dans une activité intense (Objectif 22.7, \geq 20 minutes continues, \geq 3 j/semaine, \geq 6 METs).
- Strong et al. (2005)

Activités physiques développant la force, la puissance, 2 fois par semaine

Recommandations Internationales en termes d'AP

la somme d'AP varie suivant le bénéfice à la santé (estime de soi, perte de masse grasse..)

Pourcentage d'enfants et d'adolescents atteignant les recommandations internationales en termes d'AP

Condition Physique

Réduction des risques de morbidité et de mortalité ; amélioration de la qualité de vie. Medicine and Sport Science Editors: 2 Borns, M. Hebbelinck, A.P. Hills Vol. 50

Pediatric Fitness Secular Trends and Geographic Variability

Editors G.R. Tomkinson T.S. Olds

KARGER

Condition Physique et Activité Physique

L'activité physique est défini comme tout mouvement corporel produit par les muscles squelettiques se traduisant par une dépense énergétique (Caspersen et al., 1985)

La condition physique est une série de qualités physiques relatives à la santé ou à la performance et n'est pas synonyme d'activité physique.

Différentes dimensions de la condition physique

Condition physique et performance

Coordination musculaire Puissance musculaire Endurance cardiorespiratoire Force musculaire Endurance musculaire Mesures anthropométriques Souplesse Vitesse Équilibre

Condition physique et santé

Batterie de tests EUROFIT

Condition physique et Activité physique

Williams., Med Sci Sport Exerc 2001

Syndrome Métabolique et Activité Physique

Figure 1—Relationship between quartiles (Q1–Q4) of physical activity and metabolic risk score (±SE), stratified by physical fitness below () and above (□) the median. Means are adjusted for all covariates.

Relations entre composants de la Condition Physique chez l'adolescent et la santé adulte

• Niveau Elevé de condition Physique (endurance cardiorespiratoire, force et composition corporelle) pendant l'adolescence

Associé à un profil de santé cardiovasculaire à l'âge adute

• Augmentation de la Force musculaire

Associée négativement à l'adiposité

• Composition corporelle

Associé à un profil de santé cardiovasculaire à l'âge adute et un risque de morbidité moins élevé *Ruiz et al., J Sports Med, 2009*

VO_{2max} et Indice de masse corporelle

Eisenmann, IJO, 2005

VO_{2max} et Indice de masse corporelle

Eisenmann, IJO, 2005

Relations entre composants de la Condition Physique chez l'adolescent et la santé adulte

• Augmentation de l'endurance cardiorespiratoire

Associée négativement avec l'athérosclérose, le diabète et le syndrome métabolique.

• Augmentation de la force

Associée à une diminution de la pression artérielle et de l'hypercholestérolémie

• Souplesse, Coordination, Vitesse

Prédicteurs de facteurs de risque de maladie cardiovasculaire à l'âge adulte Prédicteurs de facteurs de risque de lombalgie à l'âge adulte

Ruiz et al., J Sports Med, 2009

Associations entre condition physique et santé chez l'adolescent

Relation entre niveau de condition physique et niveau d'activité physique chez les enfants et les adolescents

faculty of sciences

vrije Universiteit

amsterdam

Performances EUROFIT

Puissance musculaire (n)

Souplesse (cm)

Force explosive (cm)

faculty of sciences

 $\begin{array}{c} 136.1 \pm 18.1 \\ 145.1 \pm 22.9 \\ 1.76 \; (0.86/2.66)^* \end{array}$

 12.5 ± 4.4

 16.9 ± 4.2

1.05 (0.83/1.27)*

 19.6 ± 6.6

 22.6 ± 9.0

0.53 (0.11/0.95)*

vitesse-coordination (s)

21.8 ± 1.4 20.5 ± 1.4 -0.42 (-0.5/-0.34)*

Filles

9.7 ± 0.6 9.9 ± 0.7 -0.01 (-0.05/0.03)

Endurance cardiorespiratoire (km.h⁻¹)

Force (N/kg)

 3.82 ± 0.78 4.31 ± 0.88 0.2 (0.1/0.3)*

*:significativement différent à p<0,05

Baquet et al., Am J Human Biol, 2006

Performances EUROFIT

Puissance musculaire (n)

Souplesse (cm)

Force explosive (cm)

faculty of sciences

 192.2 ± 28.3 cm) 9.69 (8.29/11.09)*

 16.2 ± 4.0 22.1 ± 5.2 1.36 (1.03/1.69)*

17.2 ± 6.5 16.4 ± 7.9 -0.06 (-0.41/0.29)

 155.7 ± 19.7

vitesse-coordination (s)

 20.5 ± 1.3 18.4 ± 1.3 -0.58 (-0.66/-0.5)*

Garçons

 10.4 ± 0.8 11.5 ± 1.2 0.23 (0.17/0.29)*

Endurance cardiorespiratoire (km.h⁻¹)

Force (N/kg)

 4.31 ± 0.88 5.88 ± 0.98 $0.49 \ (0.45/0.53)^*$

*:significativement différent à p<0,05

Baquet et al., Am J Human Biol, 2006

mardi 18 mai 2010

Relations entre niveau d'activité physique et niveau de condition physique chez les enfants et adolescents

Garçons	Tests	Activité Physique	Activité Physique	Activité Physique +++	
Z.S.	Saut en longueur sans élan (cm)	12,54 (-2,62/27,70)	7,90 (-6,62/22,42)	14,25 (2,00/26,50)*	
	10*5m test navette (s)	-0,79 (-1,52/-0,06) *	-0,83 (-1,53/-0,13)*	-0,84 (-1,43/-0,25)*	
F	Flexion longitudinale du tronc (cm)	2,05 (-2,65/6,75)	0,72 (-3,79/5,23)	0,99 (-2,81/4,79)	
	Dynamométrie manuelle (N.kg ⁻¹)	-0,01 (-0,64/0,062)	0,011 (-0,050/0,072)	0,27 (-0,24-0,75)	
	Nombre de redressemens station assise en 30s (n)	-0,29 (2,46/6,61)*	3,74 (1,10/6,38)*	3,71 (1,49/5,93)*	
	Test navette (km.h ⁻¹)	0,84 (0,24/1,44)*	0,37 (-0,21/0,95)	0,53 (0,04/1,02)*	

*:significativement différent à p<0,05

Baquet et al., Am J Human Biol, 2006

Relations entre niveau d'activité physique et niveau de condition physique chez les enfants et adolescents

Filles	Tests	Activité Physique	Activité Physique	Activité Physique +++
Z.S.	Saut en longueur sans élan (cm)	4,73 (-0,34/14,67)	7,49 (-1,03/16,01)	15,28 (6,69/23,87)*
	10*5m test navette (s)	-0,06 (-0,63/0,51)	0,005 (-0,044/0,49)	-0,67 (-1,23/-0,11)*
F	Flexion longitudinale du tronc (cm)	0,01 (-1,57/1,59)	-2,04 (-3,39/-0,69)*	5,49 (3,88/7,1)*
	Dynamométrie manuelle (N.kg ⁻¹)	-0,3 (-0,7/0,1)	0,01 (-0,40/0,42)	0,3 (-0,1/0,7)
	Nombre de redressemens station assise en 30s (n)	1,68 (-0,3/3,66)	-0,17 (-1,88/1,54)	2,56 (0,7/4,42)*
	Test navette (km.h ⁻¹)	0,14 (-0,21/0,49)	0,02 (-0,28/0,32)	0,34 -0,04/0,72)*

Baquet et al., Am J Human Biol, 2006

*:significativement différent à p<0,05

Réaliser et orienter son AP en vue du développement et de l'entretien de soi

Course en durée

Consommation maximale d'oxygène

Vitesse maximale aérobie

(individualisation de l'entraînement, amélioriation de ses performances)
Endurance aérobie: utilisation du concept de vitesse critique
(projet de l'élève)
Exercice intermittent vs exercice continu

(connaître les effets des séances sur l'organisme)

Entraînement et VO₂max

(quels progrès attendre chez des enfants initialement sédentaires - Tableaux obtenus à partir d'une revue exhaustive de la littérature)

Baquet et al., Sport Med, 2003

VO₂max suivant le stade pubertaire

	Prépubères	Pubères	
Garcons	+6,1	+7,6	
Garçons	(-1,6 à +20,5)	$^{+7,0}$	
Filles	+6,9	15	
FILLES	(0,7 à +19,4)	-1,5	
Mixto	+1,5		
Mixte	(-7,6 à +8,2)	+9,9	

Des améliorations de VO_2 max sont possibles à tous les âges Les améliorations de VO_2 max sont indépendantes du sexe En général, une intensité d'exercice inférieure à 80% de la FC max est insuffisante

Mesure de la VMA

Léger et Boucher (1980)

- But : courir le plus longtemps possible
 - Consigne : respecter le rythme de course imposé
- Résultats : vitesse au dernier palier complété

Chamoux et collaborateurs (1995)

- But : Parcourir la plus grande distance possible en 5 min
- Consigne : idem but
- Résultats : vitesse moyenne de course

Léger et coll. (1984)

- But : courir le plus longtemps possible
- Consigne : respecter le rythme de course imposé
- Résultats : vitesse au dernier palier complété

Exemple : Navette / piste y = ,554x + 4,336

Evolution de VMA avec l'âge (garçons)

Evolution de VMA avec l'âge (filles)

Effets de l'entraînement sur la VMA de garçons soumis à 12 séances d'exercices non individualisés

: VMA avant entraînement

VMA (km.h⁻¹)

Berthoin et al. (1995) J Sports Med Phys Fitness 35 : 251-256

Effets de l'entraînement sur la VMA de garçons soumis à 12 séances d'exercices non individualisés

Berthoin et al. (1995) J Sports Med Phys Fitness 35 : 251-256

Effets de l'entraînement sur la VMA de garçons soumis à 12 séances d'exercices individualisés

Berthoin et al. (1995) J Sports Med Phys Fitness 35: 251-256

Effets de l'entraînement sur la VMA de garçons soumis à 12 séances d'exercices individualisés

Berthoin et al. (1995) J Sports Med Phys Fitness 35 : 251-256

Estimation de l'endurance aérobie

Temps limite d'exercice (endurance) Vitesse critique Index d'endurance

Temps limite à 100% de VMA

But : courir le plus longtemps possible à allure constante Consigne : respecter le rythme de course imposé Résultats : temps de course

Compris entre 4 et 8 min Indépendant de l'âge et du sexe à partir de la puberté Indépendant du niveau d'entraînement

Performance sur 1000 m = 2 min 35Performance sur 1500 m = 4 minPerformance sur 3000 m = 9 min

===> Calcul des couples de points (distance, temps)

(1000, 155), (1500, 240) et (3000, 540)

distance = 5,14.temps + 230

distance = 5,14.temps + 230

distance = **5**,**14**.temps + 230

Index d'Endurance

Exercice intermittent vs exercice continu

Perception de l'effort

Indice de Perception de l'Effort

Relation entre indice de sentiment éprouvé et indice de perception de l'effort à la fin d'un exercice de type Léger-Boucher

Berthoin S, données non publiées

mardi 18 mai 2010

Indice de Perception de l'Effort

Relation entre indice de sentiment éprouvé et indice de perception de l'effort à la fin d'un exercice de Cooper (12-min)

Berthoin S, données non publiées

Indice de Perception de l'Effort

Relation entre indice de sentiment éprouvé et indice de perception de l'effort à la fin d'un exercice de type Long-Long (3*3 min à 90% de VMA)

Berthoin S, données non publiées

Indice de Perception de l'Effort

Relation entre indice de sentiment éprouvé et indice de perception de l'effort à la fin d'un exercice de type court-court (3 séries de 10*10s à 120% de VMA)

Berthoin S, données non publiées

Relations entre Activité Physique et Condition Physique

	1	2	3	4
1. VO _{2peak} (L·min ^{−1})				
2. % body fat	-0.45†			
3. Enjoyment	0.08	-0.13		
4. Preference	0.36†	-0.34†	0.22*	
5. Tolerance	0.35†	-0.28†	0.28*	0.54†

* *P* < 0.01.

† *P* < 0.001.

 TABLE 2. Correlations of physical activity and related variables.

Enjoyment, enjoyment of exercise; Preference, preference for high-intensity exercise; Tolerance, tolerance of high-intensity exercise; \dot{VO}_{2peak} , peak oxygen uptake.

Exercice intermittent bref à haute intensité

Les exercices sont de type "intermittent court". Les combinaisons exercice/ récupération sont 10/10s et 20/20s.

 $\overline{\text{VO}_{2\text{pic}}}$ + 8,2%

VMA: + 6,1%

L'intensité des courses est graduellement augmentée pendant le cycle.

Baquet et al., IJSM, 2002

Exercice intermittent bref à haute intensité

10 semaines d'EPS pour les filles et les garçons du groupe expérimental

Baquet et al., IJSM, 2001

Exercices intermittents et fréquence cardiaque

		Garçons			Filles	
	Course	Course et bondiss.	Témoin	Course	Course et bondiss.	Témoin
Sujets	50	72	39	37	51	27
Enregistr.	173	239	50	120	148	31
Age	13,0±1,2	13,0±1,5	13,0±1,3	12,5±1,2	12,5±1,3	12,8±1,2*
(années)						
FCmax (bpm)	207±8**	204±11	204±8	204±9	203±10	208±7
FCmoy (bpm)	154±12	152±13	129±15***	156±12	157±11	136±14***
FCmoy (%FCmax)	74±5	74±6	63±6***	76±5	77±5	67±6***

** : significativement différent des autres groupes (P < 0,01)

*** : significativement différent des autres groupes (P < 0,001)

Performance aérobie maximale

Test maximal

Démarrage du test à 6 km.h⁻¹

La vitesse est augmentée de 0,5 km.h⁻¹ toutes les minutes.

La vitesse au dernier palier de 1 minute entièrement complété est la VMA.

Performance en endurance

Temps limites:

1 ou 2 coureurs ensemble 90 et 100% de VMA

Echauffement de 3 minutes à une vitesse de 7,5 km.h⁻¹

1 minute de repos

Variabilité sinusale du rythme cardiaque

Enregistrements simultanés

Spirométrie

Echographie cardiaque

Tension artérielle

Séances d'entraînement

Entraînement intermittent

Exercices brefs et intenses (course et sauts).

5/15s, 10/10s, 15/10s, 20s/20s et 30/30s.

100 à 190% de VMA.

L'intensité est progressivement augmentée pendant le programme d'entraînement.

Séances d'entraînement

Entraînement continu

Exercice/récupération: 4*6', 3*8', 2*10', 2*12', 1*15', 1*18', 1*20'

5' de récupération entre chaque série

80 à 90% de VMA

L'intensité est progressivement augmentée pendant le programme d'entraînement.

Performances aérobies

Après entraînement, la VMA a augmenté significativement (p<0.001):

pour le groupe continu (10,7±1,1 vs 11,6±1,1 km.h⁻¹)

pour le groupe intermittent $(11,3\pm0.8 \text{ vs } 12.1\pm0.7 \text{ km.h}^{-1})$.

Aucune différence n'existait pour le groupe contrôle (10.9±1.4 vs 10.9±1.4 km.h⁻¹)

Pas d'effet significatif sur la performance en endurance

Baquet et al., JCRS, 2010

Paramètres respiratoires

L'entraînement par des exercices intermittents favorise l'amélioration des débits bronchiques des grandes voies aériennes.

En effet, lors d'exercices intermittents les enfants atteignent de plus hauts débits ventilatoires que lors d'exercices continus à cause de plus hautes intensités d'exercice.

Paramètres respiratoires

Table 2 Pulmonary-functi					
	$\operatorname{Tr}\mathbf{G}(n=9)$		ContG $(n = 9)$		
	Before	After	Before	After	
FVC (L) FEV ₁ (L)	$1.87 \pm 0.36 \\ 1.58 \pm 0.23$	$2.00 \pm 0.38^{*}$ $1.76 \pm 0.27^{*}$	• Augmente	la fonction	
FEV_1/FVC (%) PEF (L.s ⁻¹)	85.2 ± 9.1 3.00 ± 0.76	89.3 ± 9.8 $3.52 \pm 0.90^{**}$	pulmonaire a		
$\begin{array}{c} \text{MEF}_{75\%} \text{ (L.s}^{-1}) \\ \text{MEF}_{50\%} \text{ (L.s}^{-1}) \end{array}$	2.85 ± 0.69 2.11 ± 0.51	$3.28 \pm 0.79^{**}$ $2.49 \pm 0.71^{*}$	Modifie la		
$MEF_{25\%}$ (L.s ⁻¹) Δ FVC (L)	1.16 ± 0.40 -0.07 ± 0.11	1.34 ± 0.43 $0.05 \pm 0.12*$	durant l'exe		
ΔFEV_1 (L) $\Delta FEV_1/FVC$ (%)	-0.09 ± 0.20 -0.91 ± 7.80	$0.20 \pm 0.19^{*}$ 1.64 ± 5.14			
$\Delta PEF (L.s^{-1})$ $\Delta MEF_{75\%} (L.s^{-1})$	-0.32 ± 0.79 -0.13 ± 0.79	$0.36 \pm 0.76^{**}$ $0.39 \pm 0.92^{**}$	• Meilleure e		
$\Delta \text{ MEF}_{50\%} (\text{L.s}^{-1})$ $\Delta \text{ MEF}_{25\%} (\text{L.s}^{-1})$	-0.09 ± 0.60 -0.05 ± 0.57	0.12 ± 0.41 0.04 ± 0.33		pour répondre	
25% (215)	0.00 = 0.07	0.0 0.00	— à la demand	e métabolique	

Values are means \pm SD. *TrG*, trained group; *ContG*, control group; *FVC*, forced vital capacity; *FEV*₁, forced expiratory volume in 1 s; *PEF* peak expiratory flow; *MEF*_{75%}, MEF_{50%} and MEF_{25%}, maximal expiratory flow at 75, 50 and 25% of FVC respectively. Δ FVC, pre-post exercise forced vital capacity; Δ FEV₁, pre-post exercise forced expiratory in volume in 1s; Δ PEF, pre-post exercise

in peak expiration, pre-post exercise maximal expiratory flow at 75, 50 and 25% of FVC respectively.

Significant difference between before and after training: *P < 0.05, **P < 0.01.

Paramètres cardiaques

2 mois d'entraînement ne permet pas de modifier la fonction diastolique chez les enfants prépubères.

Les deux groupes présentaient une lègère baisse de la pression artérielle.

Obert et al., Br J Med, 2009

Paramètres cardiaques

Pas d'augmentation significative des paramètres de la variabilité du rythme cardiaque

- Une trop courte période d'entraînement

Le système de régulation autonome du coeur est moins sensible à l'entraînement chez les enfants

Durée des séances: 25 min

2*10 min à 80 ou 85% de VMA

10/10s de 100 à 130% de VMA

5/15s bondissements et sprint

10/10s de 100 à 130% de VMA

5/15s bondissements et sprint

Durée des séances: 25 min

2*10 min à 80 ou 85% de VMA

Durée des séances: 25 min

10/10s de 100 à 130% de VMA

5/15s bondissements et sprint

2*10 min à 80 ou 85% de VMA

10/10s de 100 à 130% de VMA

5/15s bondissements et sprint

Durée des séances: 25 min

2*10 min à 80 ou 85% de VMA

***: significativement différent de $HI_{20/20}$, $HI_{10/10}$ and $HI_{5/15}$ à p<0,001; **: à p<0,01.

^{†††}: significativement différent de HI_{5/15} à p<0,001; [†]: à p<0,05; significativement différent de HI_{10/10} et HI_{5/15} à p<0,05.

Récupération active/Récupération Passive

Récupération active/Récupération Passive

	RP	RA
Tlim(s)	646*	223
Dlim (m)	1116*	489
%VO ₂ max	70,4	80,9*
%FCmax	90,4	89,2
tVO2max (s)	30,4	43,6

Je vous remercie de votre attention...

Musculation Entraînement de type force

TABLE 2. Recommendations	for progressic	on during resistan	ice training for strength.*
--------------------------	----------------	--------------------	-----------------------------

	Novice	Intermediate	Advanced
Muscle action	ECC and CON	ECC and CON	ECC and CON
Exercise choice Intensity	SJ and MJ 50-70% 1RM	SJ and MJ 60-80% 1RM	SJ and MJ 70–85% 1RM
Volume	1–2 sets $ imes$ 10–15 reps	2–3 sets $ imes$ 8–12 reps	\geq 3 sets $ imes$ 6–10 reps
Rest intervals (min)	1	1-2	2-3
Velocity	Moderate	Moderate	Moderate
Frequency (d⋅wk ⁻¹)	2-3	2–3	3–4

*ECC = eccentric; CON = concentric; SJ = single joint; MJ = multi-joint; 1RM = 1 repetition maximum; rep = repetition.

Faigenbaum et al., JSCR 2009

Musculation Entraînement de type Puissance

TABLE 3. Recommendations fo	r progression	during	resistance	training for power	•
-----------------------------	---------------	--------	------------	--------------------	---

	Novice	Intermediate	Advanced
Muscle action	ECC and CON	ECC and CON	ECC and CON
Exercise choice	MJ	MJ	MJ
Intensity	30-60% 1RM VEL	30-60% 1RM VEL	30-60% 1RM VEL
-		60–70% 1RM STR	70 to ≥80% 1RM STR
Volume	1–2 sets $ imes$ 3–6 reps	2–3 sets $ imes$ 3–6 reps	\geq 3 sets $ imes$ 1–6 reps
Rest intervals (min)	1	1-2	2–3
Velocity	Moderate/fast	Fast	Fast
Frequency (d⋅wk ⁻¹)	2	2–3	2–3

*ECC = eccentric; CON = concentric; MJ = multi-joint; 1RM = 1 repetition maximum; VEL = velocity; STR = strength; rep = repetition.