Université Lille 2

Droit et Santé

Activité Physique et Condition Physique chez l'Adolescent

Lille, le 17 Mai 2010
Georges Baquet, Maître de Conférenres

Surpoids et Obésité chez les adolescents Garçons (14-17 ans)

Surpoids et Obésité chez les préadolescents Garçons (7-11 ans)

© IASO November 2006

\$\| BiLLION IS SPENT YeARLY ADVERTIIING CONVENIENCE FOODS, SNACKS AND ALCOHOLIC BEVERAGES.

European Youth Heart Study

FIGURE 2-Age and gender distribution of time engaged in physical activity of at least moderate intensity by country (columns are means \pm SD).

Amherst study (USA)

FIGURE 1-Nontransformed means \pm SD for daily MVPA by gender and grade level; * significant gender difference within grade group, $P<0.05 ;$ \# significantly different from previous grade group within gender, $P<0.05$.

Amherst study (USA)

FIGURE 2-Nontransformed means \pm SD for daily VPA by gender and grade level; * significant gender difference within grade group, $\boldsymbol{P}<0.05$; \# denotes significantly different from previous grade group within gender, $P<0.05$.

Toulon (France)

[^0]
Toulon (France)

* significant school level differences $P<0.05$; $£$ significant gender differences $P<0.05$; \$ significant day of week differences $P<0.05$.

Participation aux cours d'EPS

Performances des enfants et des adolescents aux tests anaérobies et aérobies

RELATIONS ACTIVITE PHYSIQUE ET SANTE CHIEZ L'ADOLESCENT

Hallal et al., Sport Med, 2006

A: Influence de l'AP pendant l'adolescence sur l'AP à l'âge adulte

- AP pendant l'adolescence contribue au niveau d'AP à l'âge adulte
- 13 études longitudinales
- Kemper et al. (2004)
- Trudeau et al. (1998)
- Gordon Larsen et al. (1999)
- ...mais on ne connaît la somme d'AP requise pour un style de vie actif

B: Influence de l'AP pendant l'adolescence sur la morbidité à l'âge adulte

- Harvard Alumni Health study (1986)
- Pas d'incidence entre niveaux d'AP et MCV
- Depuis 9 études longitudinales
- Effet protecteur sur l'appareil osseux
- Effet sur le cancer du sein
- Pas de corrélation avec les risques de MCV

Sédentarité et faible condition physique sont associées à une santé plus précaire

C: Influence de l'AP pendant l'adolescence sur le traitement et le pronostic de morbidité à l'âge adulte

- AP et Asthme (natation)
- Fonction pulmonaire chez les adolescents atteints de mucoviscidose
- AP augmente l'estime de soi chez les adolescents
- AP et traitement de l'obésité Faible effectif des études
- AP et traitement de la boulimie

D: Influence de l'AP pendant l'adolescence sur la morbidité de l'adolescent

- Twisk (2001): pas d'effet sur niveau lipidique, tension artérielle et glycémie
: effet positif sur HDL-C et $\mathrm{VO}_{2} \max$
: diminue le stress et augmente l'estime de soi
: inversement corrélée à la masse grasse
- Motl et al. (2004): inversement corrélée à la dépression
- ACSM (2004): effet positif sur la masse osseuse
- Santé cardiovasculaire?

Bénéfice à la santé varie suivant la condition des adolescents (pathologie ou non)

Effet de la baisse d'AP

E: Effets négatifs de l'AP pendant l'adolescence

- Contraindre l'adolescent à une pratique physique peut engendrer une inactivité à l'âge adulte (Taylor et al., 1999)
- Anorexie et désordre alimentaire (Beumont et al., 1994)
- Blessure (Stricker et al., 2002)
- Amménorhées (Eliakim et al., 2003)
- Croissance interrompue (Risser, 1991)

Variables ayant une influence sur l'AP des jeunes

ENFANTS	ADOLESCENTS
	Parents: Aide directe + Encouragements ++ AP ciblée ++
Activité physique des Parents (50\% de la variance)	Activité physique des Parents (50\% de la variance)

PSYCHOSOCIAL AND ENVIRONMENTAL CORRELATES OF ADOLESCENT SEDENTARY BEHAVIORS

Norman et al., Pediatrics, 2005

	Girls--Odds Ratios	Boys--Odds Ratios
TV/video rules	0.67^{\star}	0.76^{\star}
Family support for change	0.96	1.08
Encourage PA	0.89	0.86
Transport to PA	0.93	0.85^{\star}

Table. Results From Multiple Regression Models Using Activity Motivation and Risk Status to Predict Adolescents' Physical Activity

Predictors of Physical Activity*	$\boldsymbol{\beta} \boldsymbol{\dagger}$	\boldsymbol{P} Value
Model 1: Risk Factor = Overweight Status	\boldsymbol{R}^{2} for Model $=\mathbf{0 . 4 1}$	
Personal fulfillment motivation	.61	$<.001$
Weight motivation	-.09	.19
Peer motivation	.05	.48
Parent motivation	-.15	.07
Overweight status	-.52	$<.01$
Parent motivation \times overweight status	.46	.01
Model 2: Risk Factor = Sex	\boldsymbol{R}^{2} for Model $=\mathbf{0 . 4 2}$	
Personal fulfillment motivation	.63	$<.001$
Weight motivation	-.74	$<.001$
Peer motivation	.08	.22
Parent motivation	-.01	.86
Gender	-.59	$<.001$
Weight motivation \times sex	.81	$<.01$
Model 3: Risk Factor = Perceived	\boldsymbol{R}^{2} for Model $=\mathbf{0 . 4 2}$	
\quad Athletic Competence		
Personal fulfillment motivation	.49	$<.001$
Weight motivation	-.13	$<.05$
Peer motivation	.12	.07
Parent motivation	-.03	.68
Perceived athletic competence	.25	$<.001$

Source de motivation pour les programmes d'AP

Epanouissement personnel

Recommandations Internationales en termes dAP

- Sallis and Patrick (1994)

20 min dans une activité de modérée à intense, au moins 3 fois par semaine

- The United Kingdom Expert Consensus Group (1998)

60 minutes accumulées par jour dans une AP de modérée à intense
($\geq 60 \mathrm{~min}, \geq 5 \mathrm{j} /$ semaine, $\geq 3 \mathrm{METs}$).

- Healthy People 2010 (2000)
- 30 minutes accumulées par jour dans une AP de modérée à intense ($\geq 60 \mathrm{~min}, \geq 5 \mathrm{j} /$ semaine, $\geq 3 \mathrm{METs}$)
- 3 plages de 20 minutes continues par semaine dans une activité intense (Objectif 22.7, ≥ 20 minutes continues, $\geq 3 \mathrm{j} /$ semaine, ≥ 6 METs).
- Strong et al. (2005)

Activités physiques développant la force, la puissance, 2 fois par semaine

Recommandations Internationales en termes d'AP

la somme d'AP varie suivant le bénéfice à la santé (estime de soi, perte de masse grasse..)

Pourcentage d'enfants et d'adolescents atteignant les recommandations internationales en termes dAP

Pate et al., Ann Epidemiol , 2002

Condition Physique

Santé

Réduction des risques de morbidité et de mortalité ; amélioration de la qualité de vie.

Medicine and Sport Science Ethuri 1 Homs M. Nebevinct, AP. H1: Vot. 50

Pediatric Fitness

Secular Trends and Geographic Variability

Editori

G.R.Tomkinson
T.S. Olds

Condition Physique et Activité Physique

L'activité physique est défini comme tout mouvement corporel produit par les muscles squelettiques se traduisant par une dépense énergétique (Caspersen et al., 1985)

La condition physique est une série de qualités physiques relatives à la santé ou à la performance et n'est pas synonyme d'activité physique.

Différentes dimensions de la condition physique

Batterie de tests EUROFIT

Condition physique et Activité physique

Syndrome Métabolique et Activité Physique

Relations entre composants de la Condition Physique chez l'adolescent et la santé adulte

HELENA

- Niveau Elevé de condition Physique (endurance cardiorespiratoire, force et composition corporelle) pendant l'adolescence

Associé à un profil de santé cardiovasculaire à l'âge adute

- Augmentation de la Force musculaire

Associée négativement à l'adiposité

- Composition corporelle

Associé à un profil de santé cardiovasculaire à l'âge adute et un risque de morbidité moins élevé

$\mathrm{VO}_{2 \text { max }}$ et Indice de masse corporelle

$\mathrm{VO}_{2 \text { max }}$ et Indice de masse corporelle

Eisenmann, IJO, 2005

Relations entre composants de la Condition Physique chez l'adolescent et la santé adulte

- Augmentation de l'endurance cardiorespiratoire

Associée négativement avec l'athérosclérose, le diabète et le syndrome métabolique.

- Augmentation de la force

Associée à une diminution de la pression artérielle et de l'hypercholestérolémie

- Souplesse, Coordination, Vitesse

Prédicteurs de facteurs de risque de maladie cardiovasculaire à l'âge adulte Prédicteurs de facteurs de risque de lombalgie à l'âge adulte

Associations entre condition physique et santé chez l'adolescent

Ortega et al., IJO, 2008

Relation entre niveau de condition physique et niveau d'activité physique chez les enfants et les adolescents

Performances EUROFIT

Filles

vitesse-coordination (s)

$$
\begin{gathered}
9.7 \pm 0.6 \\
9.9 \pm 0.7 \\
-0.01(-0.05 / 0.03)
\end{gathered}
$$

Endurance cardiorespiratoire (km.h ${ }^{-1}$)

3.82 ± 0.78
4.31 ± 0.88
$0.2(0.1 / 0.3)^{*}$
Force (N / kg)

Performances EUROFIT

Relations entre niveau d'activité physique et niveau de condition physique chez les enfants et adolescents

Garçons	Tests	Activité Physique	Activité Physique	Activité Physique +++
5	Saut en longueur sans élan (cm)	12,54 (-2,62/27,70)	7,90 (-6,62/22,42)	14,25 (2,00/26,50)*
	$10 * 5 \mathrm{~m}$ test navette (s)	$-0,79(-1,52 /-0,06)$ *	$-0,83(-1,53 /-0,13) *$	$-0,84(-1,43 /-0,25) *$
$\frac{5}{\sqrt{5} \frac{5}{46} \pi}$	Flexion longitudinale du tronc (cm)	2,05 (-2,65/6,75)	0,72 (-3,79/5,23)	0,99 (-2,81/4,79)
$1{ }^{1}$	Dynamométrie manuelle ($\mathrm{N}_{\mathrm{k}} \mathrm{kg}^{-1}$)	-0,01 (-0,64/0,062)	0,011 (-0,050/0,072)	0,27 (-0,24-0,75)
$\begin{gathered} \text { "in } \\ \text { anick } \end{gathered}$	Nombre de redressemens station assise en 30s (n)	$-0,29(2,46 / 6,61) *$	3,74 (1,10/6,38)*	3,71 (1,49/5,93)*
$\mathrm{S}^{-\mathrm{L}^{2}}$	Test navette (km. h^{-1})	0,84 (0,24/1,44)*	0,37 (-0,21/0,95)	0,53 (0,04/1,02)*

Relations entre niveau d'activité physique et niveau de condition physique chez les enfants et adolescents

Filles	Tests	Activité Physique	Activité Physique	Activité Physique $+++$
2^{5}	Saut en longueur sans élan (cm)	4,73 (-0,34/14,67)	7,49 (-1,03/16,01)	15,28 (6,69/23,87)*
	10*5m test navette (s)	-0,06 (-0,63/0,51)	0,005 (-0,044/0,49)	-0,67 (-1,23/-0,11)*
$\sqrt{1}$	Flexion longitudinale du tronc (cm)	0,01 (-1,57/1,59)	-2,04 (-3,39/-0,69)*	5,49 (3,88/7, ${ }^{\text {a }}$ *
i^{1}	Dynamométrie manuelle ($\mathrm{N} . \mathrm{kg}^{-1}$)	-0,3 (-0,7/0,1)	0,01 (-0,40/0,42)	0,3 (-0,1/0,7)
塴 sian	Nombre de redressemens station assise en 30s (n)	1,68 (-0,3/3,66)	-0,17 (-1,88/1,54)	2,56 (0,7/4,42)*
	Test navette (km. h^{-1})	0,14 (-0,21/0,49)	0,02 (-0,28/0,32)	0,34--0,04/0,72)**

Réaliser et orienter son AP en vue du développement et de l'entretien de soi

Course en durée

Consommation maximale d'oxygène Vitesse maximale aérobie
(individualisation de l'entraînement, amélioriation de ses performances)
Endurance aérobie: utilisation du concept de vitesse critique (projet de l'élève)
Exercice intermittent vs exercice continu (connaître les effets des séances sur l'organisme)

Entrainement et $\mathrm{VO}_{2} \mathrm{max}$

(quels progrès attendre chez des enfants initialement sédentaires - Tableaux obtenus à partir d'une revue exhaustive de la littérature)

VO_{2} max suivant le stade pubertaire

	Prépubères	Pubères
Garçons	$+6,1$ $(-1,6 \grave{a}+20,5)$	$+7,6$
Filles	$+6,9$ $(0,7 ~ a ̀ ~+19,4)$	$-1,5$
Mixte	$+1,5$ $(-7,6 \mathrm{a}+8,2)$	$+9,9$

Des améliorations de $\mathrm{VO}_{2} \max$ sont possibles à tous les âges
Les améliorations de VO_{2} max sont indépendantes du sexe
En général, une intensité d'exercice inférieure à 80% de la FC max est insuffisante

Mesure de la VMA

Léger et Boucher (1980)

> But : courir le plus longtemps possible
> Consigne : respecter le rythme de course imposé
> Résultats : vitesse au dernier palier complété

Chamoux et collaborateurs (1995)

But : Parcourir la plus grande distance possible en 5 min
Consigne : idem but
Résultats : vitesse moyenne de course

Léger et coll. (1984)

But : courir le plus longtemps possible
Consigne : respecter le rythme de course imposé
Résultats : vitesse au dernier palier complété

Exemple : Navette / piste

$$
y=, 554 x+4,336
$$

Evolution de VMA avec l’âge (garçons)

Evolution de VMA avec l 'âge (filles)

Effets de l'entraînement sur la VMA de garçons soumis à 12 séances d'exercices non individualisés

: VMA avant entraînement

Effets de l'entraînement sur la VMA de garçons soumis à 12 séances d'exercices non individualisés

$\square:$: VMA avant entrainement \square : VMA après entraînement

Effets de l'entraînement sur la VMA de garçons soumis à 12 séances d'exercices individualisés

: VMA avant entraînement

Effets de l'entraînement sur la VMA de garçons soumis à 12 séances d'exercices individualisés

Estimation de l'endurance aérobie

Temps limite d'exercice (endurance)
Vitesse critique
Index d'endurance

Temps limite à 100\% de VMA

But : courir le plus longtemps possible à allure constante
Consigne : respecter le rythme de course imposé
Résultats : temps de course

Compris entre 4 et 8 min
Indépendant de l'âge et du sexe à partir de la puberté Indépendant du niveau d'entraînement

Vitesse critique

Performance sur $1000 \mathrm{~m}=2 \mathrm{~min} 35$
Performance sur $1500 \mathrm{~m}=4 \mathrm{~min}$
Performance sur $3000 \mathrm{~m}=9 \mathrm{~min}$
===> Calcul des couples de points (distance, temps)
$(1000,155),(1500,240)$ et $(3000,540)$

Vitesse critique

Vitesse critique

distance $=\mathbf{5 , 1 4 . t e m p s}+230$

Vitesse critique

distance $=\mathbf{5 , 1 4 . t e m p s}+230$

Vitesse critique

distance $=$ 5,14.temps +230

Index d'Endurance

$$
\mathrm{IE}=\frac{\% \mathrm{VMA}_{2}-\% \mathrm{VMA}_{1}}{\operatorname{Ln}\left(\mathrm{t}_{2}\right)-\operatorname{Ln}\left(\mathrm{t}_{1}\right)}
$$

$\ln ($ temps $)$ en secondes

Exercice intermittent vs exercice continu

Perception de l'effort

Indice de Sentiment Eprouvé

Relation entre indice de sentiment éprouvé et indice de perception de l'effort à la fin d'un exercice de type Léger-Boucher

Berthoin S, données non publiées

Indice de Sentiment Eprouvé

Relation entre indice de sentiment éprouvé et indice de perception de l'effort à la fin d'un exercice de Cooper (12-min)

Berthoin S, données non publiées

Indice de Sentiment Eprouvé

Relation entre indice de sentiment éprouvé et indice de perception de l'effort à la fin d'un exercice de type Long-Long ($3 * 3$ min à $\mathbf{9 0 \%}$ de VMA)

Indice de Sentiment Eprouvé

Relation entre indice de sentiment éprouvé et indice de perception de l'efifort à la fin d'un exercice de type court-court (3 séries de 10*10s à $\mathbf{1 2 0 \%}$ de VMA)

Berthoin S, données non publiées

Relations entre Activité Physique et Condition Physique

	1	2	3	4
1. $\dot{\mathrm{V}} \mathrm{O}_{\text {2peak }}\left(\mathrm{L} \cdot \mathrm{min}^{-1}\right)$	-			
2. \% body fat	$-0.45 \dagger$	-		
3. Enjoyment	0.08	-0.13	-	
4. Preference	$0.36 \dagger$	$-0.34 \dagger$	0.22 *	
5. Tolerance	$0.35 \dagger$	-0.28†	0.28*	0.54†
${ }^{*} P<0.01 \text {. }$				
Enjoyment, enjoyment Tolerance, tolerance of	cise; Pre tensity e	preferen $\mathrm{VO}_{2 \text { peak }}$,	high-int xygen	exercis

Exercice intermittent bref à haute intensité

Les exercices sont de type "intermittent court".
Les combinaisons exercice/ récupération sont 10/10s et 20/20s.
$\mathrm{VO}_{2 \text { pici }}+\mathbf{8 , 2 \%}$
VMA: + 6,1\%
L'intensité des courses est graduellement augmentée pendant le cycle.

Exercice intermittent bref à haute intensité

4\%
$4,5 \%$

Performances aux tests EUROFIT avant et après
 10 semaines d'EPS pour les filles et les garçons du groupe expérimental

Exercices intermittents et fréquence cardiaque

Sujets Enregistr.	Garçons			Filles		
	Course	Course et bondiss.	Témoin	Course	Course et bondiss.	Témoin
	50	72	39	37	51	27
	173	239	50	120	148	31
$\begin{aligned} & \text { Age } \\ & \text { (années) } \end{aligned}$	$13,0 \pm 1,2$	13,0 $\pm 1,5$	13,0 $\pm 1,3$	12,5 $\pm 1,2$	12,5 $\pm 1,3$	12,8 $\pm 1,2 *$
FCmax (bpm)	$207 \pm 8 * *$	204 ± 11	204 ± 8	204 ± 9	203 ± 10	208 ± 7
$\begin{gathered} \text { FCmoy } \\ (\mathrm{bpm}) \end{gathered}$	154 ± 12	152 ± 13	$129 \pm 15 * * *$	156 ± 12	157 ± 11	$136 \pm 14^{* * * *}$
$\begin{gathered} \text { FCmoy } \\ (\% \text { FCmax }) \end{gathered}$	74 ± 5	74 ± 6	$63 \pm 6 * * *$	76 ± 5	77 ± 5	$67 \pm 6 * * *$

** : significativement différent des autres groupes ($\mathrm{P}<0,01$)
***: significativement différent des autres groupes ($\mathrm{P}<0,001$)

Performance aérobie maximale

Test maximal

Démarrage du test à 6 km.h ${ }^{-1}$

La vitesse est augmentée de $0,5 \mathrm{~km}_{\mathrm{k}} \mathrm{h}^{-1}$ toutes les minutes.

La vitesse au dernier palier de 1 minute entièrement complété est la VMA.

Performance en endurance

Temps limites:

1 ou 2 coureurs ensemble 90 et 100\% de VMA

Echauffement de 3 minutes à une vitesse de $7,5 \mathrm{~km} . \mathrm{h}^{-1}$

1 minute de repos

Variabilité sinusale du rythme cardiaque

Enregistrements simultanés

Spirométrie

Echographie cardiaque

Tension artérielle

Séances d'entraînement

Entraînement intermittent

Exercices brefs et intenses (course et sauts).
$5 / 15 \mathrm{~s}, 10 / 10 \mathrm{~s}, 15 / 10 \mathrm{~s}, 20 \mathrm{~s} / 20 \mathrm{~s}$ et 30/30s.

100 à 190\% de VMA.
L'intensité est progressivement augmentée pendant le programme d'entraînement.

Séances d'entrainement

Entraînement continu

Exercice/récupération:
$46^{\prime}, 3 * 8^{\prime}, 2^{*} 10^{\prime}, 2^{*} 12^{\prime}, 1^{*} 15^{\prime}, 1 * 18^{\prime}$, 1*20

5' de récupération entre chaque série

80 à 90% de VMA

L'intensité est progressivement augmentée pendant le programme d'entraînement.

Performancés aérobies

A près entraînement, la VMA a augmenté significativement ($\mathrm{p}<0.001$):
pour le groupe continu ($10,7 \pm 1,1$ vs $11,6 \pm 1,1 \mathrm{~km} . \mathrm{h}^{-1}$)
pour le groupe intermittent ($11,3 \pm 0.8$ vs $12.1 \pm 0.7 \mathrm{~km} \cdot \mathrm{~h}^{-1}$).
Aucune différence n'existait pour le groupe contrôle $\left(10.9 \pm 1.4\right.$ vs $\left.10.9 \pm 1.4 \mathrm{~km} . \mathrm{h}^{-1}\right)$

Pas d'effet significatif sur la performance en endurance

Paramètres respiratoires

L'entraînement par des exercices intermittents favorise l'amélioration des débits bronchiques des grandes voies aériennes.

En effet, lors d'exercices intermittents les enfants atteignent de plus hauts débits ventilatoires que lors d'exercices continus à cause de plus hautes intensités d'exercice.

Paramètres respiratoires

Table 2 Pulmonary-function test data

	$\operatorname{TrG}(n=9)$		ContG	
	Before	After	Before	After
FVC (L)	1.87 ± 0.36	$2.00 \pm 0.38^{*}$		
$\mathrm{FEV}_{1}(\mathrm{~L})$	1.58 ± 0.23	$1.76 \pm 0.27^{*}$	- Aug	ti
$\mathrm{FEV}_{1} / \mathrm{FVC}$ (\%)	85.2 ± 9.1	89.3 ± 9.8		
$\left.\begin{array}{l}\text { PEF (L.s } \\ \mathrm{MEF}_{75 \%} \mathrm{l} \\ \text { (L.s } \\ \text {-1 }\end{array}\right)$	3.00 ± 0.76 2.85 ± 0.69	$3.52 \pm 0.90^{* *}$ $3.28 \pm 0.79^{*}$	puim	
$\mathrm{MEF}_{50 \%}\left(\mathrm{~L} . \mathrm{s}^{-1}\right)$	2.11 ± 0.51	$2.49 \pm 0.71^{*}$	- Mod	ti
$\mathrm{MEF}_{25 \%}\left(\mathrm{~L} . \mathrm{s}^{-1}\right)$	1.16 ± 0.40	1.34 ± 0.43		
\triangle FVC (L)	-0.07 ± 0.11	$0.05 \pm 0.12^{*}$	duran	
$\triangle \mathrm{FEV}_{1}(\mathrm{~L})$	-0.09 ± 0.20	$0.20 \pm 0.19^{*}$	Curai	
$\triangle \mathrm{FEV}_{1} / \mathrm{FVC}$ (\%)	-0.91 ± 7.80 -0.32 ± 0.79	1.64 ± 5.14	- Meil	
$\triangle \operatorname{PEF}\left(\mathrm{L} . \mathrm{s}^{-1}\right)$ $\Delta \mathrm{MEF}_{75 \%}\left(\mathrm{~L} . \mathrm{s}^{-1}\right)$	$\begin{aligned} & -0.32 \pm 0.79 \\ & -0.13 \pm 0.79 \end{aligned}$	$\begin{aligned} & 0.36 \pm 0.76^{* *} \\ & 0.39 \pm 0.92^{* *} \end{aligned}$	- Mel	
	-0.13 ± 0.79 -0.09 ± 0.60	俍 $0.39 \pm 0.92^{* *}$	ventila	ép
$\Delta \mathrm{MEF}_{25 \%}\left(\mathrm{~L} . \mathrm{s}^{-1}\right)$	-0.05 ± 0.57	0.04 ± 0.33		
Values are means \pm SD. $\operatorname{Tr} G$, trained group; ContG, control group; $F V C$, forced vital capacity; $F E V_{1}$, forced expiratory volume in $1 \mathrm{~s} ; P E F$ peak expiratory flow; $M E F_{75 \%}, \mathrm{MEF}_{50}$, and $\mathrm{MEF}_{25 \%}$, maximal expiratory flow at 75,50 and 25% of FVC respectively. Δ FVC, pre-post exercise forced vital capacity; $\Delta \mathrm{FEV}_{1}$, pre-post exercise forced expiratory in volume in $1 \mathrm{~s} ; \Delta \mathrm{PEF}$, pre-post exercise in peak expira pre-post exercise maximal expiratory flow at 75,50 and 25% of FVC respectively. Significant difference between before and after training: ${ }^{*} P<0.05$, ** $P<0.01$.				

Paramètres cardiaques

2 mois d'entraînement ne permet pas de modifier la fonction diastolique chez les enfiants prépubères.

Les deux groupes présentaient une lègère baisse de la pression artérielle.

Paramètres cardiaques

Pas d'augmentation significative des paramè̀tres de la variabilité du rythme cardiaque

Une trop courte période d'entraînement
Le système de régulation autonome du coeur est moins sensible à l'entraînement chez les enfants

Réponses cardiorespiratoires à l'exercice

Durée des séances: 25 min

10/10s de 100 à 130\% de VMA

5/15s
bondissements et
sprint

Réponses cardiorespiratoires à l'exercice

10/10s de 100 à 130\% de VMA

Durée des séances: 25 min

5/15s
bondissements et sprint

2*10 min à 80 ou 85\% de VMA

Réponses cardiorespiratoires à l'exercice

Durée des séances: 25 min

10/10s de 100 à
130% de VMA

5/15s

bondissements et sprint

Réponses cardiorespiratoires à l'exercice

Durée des séances: 25 min

2*10 min à 80 ou 85\% de VMA

10/10s de 100 à 130% de VMA

5/15s

bondissements et sprint

Réponses cardiorespiratoires à l'exercice

tpic VO_{2} moyen
(\%tpicVO ${ }_{2}$)

CE80	CE85	HIE I0/IO	HIE 20/20	HIE 5/I5

[^1]
Réponses cardiorespiratoires à l'exercice

Récupération active/Récupération Passive

Récupération active/Récupération Passive

	RP	RA
Tlim(s)	646^{*}	223
Dlim (m)	1116^{*}	489
$\% \mathrm{VO}_{2} \max$	70,4	$80,9^{*}$
$\%$ FCmax	90,4	89,2
tVO2max (s)	30,4	43,6

Je vous remercie de votre attention...

Musculation

Entraînement de type force

Table 2. Recommendations for progression during resistance training for strength.*

	Novice	Intermediate	Advanced
Muscle action	ECC and CON	ECC and CON	ECC and CON
Exercise choice	SJ and MJ	SJ and MJ	SJ and MJ
Intensity	$50-70 \% 1$ RM	$60-80 \% 1$ RM	$70-85 \% 1 \mathrm{RM}$
Volume	$1-2$ sets $\times 10-15$ reps	$2-3$ sets $\times 8-12$ reps	≥ 3 sets $\times 6-10$ reps
Rest intervals (min)	1	$1-2$	$2-3$
Velocity	Moderate	Moderate	Moderate
Frequency (d $\cdot \mathrm{wk}^{-1}$)	$2-3$	$2-3$	$3-4$
*ECC $=$ eccentric; CON $=$ concentric; $\mathrm{SJ}=$ single joint; $\mathrm{MJ}=$ multi-joint; $1 \mathrm{RM}=1$ repetition maximum; rep $=$ repetition.			

Musculation

Entraînement de type Puissance

Table 3. Recommendations for progression during resistance training for power.*

	Novice	Intermediate	Advanced
Muscle action	ECC and CON	ECC and CON	ECC and CON
Exercise choice	MJ	MJ	MJ
Intensity	30-60\% 1RM VEL	30-60\% 1RM VEL	30-60\% 1RM VEL
		60-70\% 1RM STR	70 to $\geq 80 \% 1 \mathrm{RM}$ STR
Volume	1-2 sets $\times 3-6$ reps	2-3 sets $\times 3-6$ reps	≥ 3 sets $\times 1-6$ reps
Rest intervals (min)	1	1-2	2-3
Velocity	Moderate/fast	Fast	Fast
Frequency ($\mathrm{d} \cdot \mathrm{wk}{ }^{-1}$)	2	2-3	2-3

[^0]: * significant school level differences $P<0.05$; £ significant gender differences $P<0.05$; \$ significant day of week differences $P<0.05$.

[^1]: ***: significativement différent de $\mathrm{H}_{2020}, \mathrm{H}_{10110}$ and $\mathrm{H}_{5 / 15}$ à $\mathrm{p}<0,001$; **: à p $<0,01$.

